

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous & ISO 9001:2015 Certified

Title of the Course: GRAPH THEORY Semester : I

Course Code	23MA1T4	Course Delivery Method	Blended Mode
Credits	5	CIA Marks	30
No. of Lecture Hours / Week	5	Semester End Exam Marks	70
Total Number of Lecture Hours	75	Total Marks	100
Year of Introduction : 2023-2024	Year of offering : 2023-2024	Year of Revision:	Percentage of Revision :

Course Objectives : To develop skills and to acquire knowledge on some basic concepts in connected graphs, Euler graphs, Hamiltonian graphs, Trees and Circuits, Planar graphs and Dual graphs etc.

Course Outcomes: After successful completion of this course, students will be able to

CO1: understand the properties directed graphs, Euler and Hamiltonian graphs. (PO1)

CO2: understand the properties of trees. (PO3)

CO3: illustrate the properties of cut sets and cut vertices. (PO4)

CO4: detect the planarity of a graph. (PO3)

CO5: illustrate the structure of a graph as a vector space. (PO1)

UNIT-I

Introduction: What is a Graph, Finite and Infinite graphs, Incidence and degree, Isolated Vertex, Pendant Vertex and Null Graph.

Paths and circuits: Isomorphism, Subgraphs, a puzzle with multi colored cubes. walks, Paths and Circuits, connected graphs, Disconnected graphs, Components, Euler graphs, Operations on graphs, More on Euler graphs, Hamiltonian paths and circuits, Travelling – Salesman Problem. (Chapters 1 and 2 of [1]).

UNIT-II

Trees and Fundamental Circuits: Trees , some properties of trees , pendant Vertices in a tree, distances and centers in a tree, rooted and binary trees, on Counting trees, spanning trees, fundamental circuits, finding all spanning trees of a graph , spanning trees in a weighted Graphs. (Chapter 3 of [1])

UNIT-III

Cut sets and Cut –vertices: Cut sets, Some Properties of a Cut Set, All cut sets in a Graph, Fundamental circuits and cut sets, connectivity and separability, network flows, 1-isomorphism, 2- isomorphism. (Chapter 4 of [1])

UNIT-IV

Planar and dual graphs: Combinatorial Vs Geometric graphs, Planer graphs, Kuratowski's two graphs, Different representations of a planar graph, Detection of planarity, Geometric dual. (Sections 1 to 6 of Chapter 5 of [1])

UNIT-V

Vector spaces of a graph: Sets with one operation, Sets with two operations, Modular arithmetic and Galois field, Vectors and Vector spaces, Vector space associated with a graph, Basis vectors of graph, circuits and cut-set sub spaces.

(Sections 1 to 7 of Chapter 6 of [1])

PRESCRIBED BOOK:

[1] "Graph theory with applications to Engineering and Computer Science", NARSINGH DEO, Prentice Hall of India Pvt., New Delhi,1993.

REFERENCE BOOK:

" Graph Theory with Applications", BONDY J.A AND U.S.R. MURTHY, North Holland, **Course has Focus on :** Foundation

Websites of Interest: 1. www. nptel.ac.in

- 2. www.epgp.inflibnet.ac.in
- 3. www.ocw.mit.edu

P B SIDDHARTHA COLLEGE OF ARTS AND SCIENCE::VIJAYAWADA (An Autonomous college in the jurisdiction of Krishna University) M. Sc. Mathematics **First Semester GRAPH THEORY –23MA1T4**

Time: 3 Hours

SECTION-A

Answer all questions	(5X4=20)
1 a) Prove that the number of vertices of odd degree in a graph is always even. (OR)	(CO1, L1)
b) A connected graph G is an Euler graph if and only if it can be decomposed	into circuits. (CO1, L1)
2 a) Prove that there is one and only one path between every pair of vertices in a	tree.
	(CO2, L1)
(OR)	
b) Prove that every tree has either one or two centers.	(CO2, L1)
3 a) Show that every circuit has an even number of edges in common with any cu	ut set. (CO3, L1)
(OR)	
b) Define the edge connectivity of a graph. Show that the edge connectivity of a never exceed the degree of the vertex with smallest degree in G.	graph can (CO3, L1)
4 a) Show that a graph can be embedded in the surface of a sphere if and only if i	t can be
embedded in a plane.	(CO4, L1)
(OR)	
b) Prove that all duals of a planar graph are 2-isomorphic.	(CO4, L1)
5 a) Prove that the set consisting of all the cut sets and the edge disjoint unions of graph G is an abelian group under the ring sum operation. (OR)	f cut sets in a (CO5, L2)
b) Prove that the set of all circuit vectors in W_G forms a sub space of W_S .	(CO5, L2)
SECTION-B	
Answer all questions. All questions carry equal marks.	(5X10=50)
6 a) If graph G has exactly two vertices of odd degree, then show that there must joining these two vertices. (OR)	be a path (CO1, L2)
b) Prove that a connected graph G is Euler graph if and only if all vertices of G	are of even
degree.	(CO1, L2)

Max. Marks: 70

(5X4=20)

7 a) Prove that a tree with n vertices have n-1 edges.				
(OR)				
b) Show that every connected graph has at least one spanning tree.				
8 a) Show that every cut set in a connected graph G must contains at least one branch of				
every spanning tree of G.	(CO3, L2)			
(OR)				
b) Show that a vertex v in a connected graph G is a cut vertex if and only if there exists two				
vertices x and y in G such that every path between x and y passes through v.	(CO3, L2)			
9 a) Show that the complete graph with five vertices is non-planar.	(CO4, L3)			
(OR)				
b) State and prove Euler's formula.	(CO4, L3)			
10 a) Prove that the ring sum of two circuits in a graph G is either a circuit or an edge disjoint				
unions of circuits.	(CO5, L2)			
(OR)				
b) Prove that in a graph G. We is a vector space	(CO5 I 2)			

b) Prove that in a graph G, W_G is a vector space. (CO5, L2)
